

DEVELOPMENT OF A PROBABILITY EQUATION FOR WINTER-TYPE PRECIPITATION PATTERNS IN GREAT FALLS, MONTANA

Kenneth B. Mielke

National Weather Service Western Region Salt Lake City, Utah
March 1978

NOAA TECHNICAL MEMDRANDA National Weather Service, Western Region Subseries

The National Weather Service (NWS) Western Region (WR) Subseries provides an Informal medium for the documentation and quick dissemination of results not appropriate, or not yet ready, for formal publication. The serles is used to report on work in progress, to describe technical procedures and practices, or to relate progress to a limited audience. These Technical Memoranda will report on investigations devoted primarily to regional and local problems of interest mainty to personnel, and hence will not be widely distributed.

Papers 1 to 25 are in the former series, ESSA Technical Memoranda, Western Region Technical Memoranda (WRTM); papers 24 to 59 are in the former series, ESSA Technical Memoranda, Weather Bureau Technical Memoranda (WBTM). Beginning with 60 ,
the papers are part of the series, NOAA Technical Memoranda NWS. Out-of-print memoranda are not listed (inclusive, I-1l5).

Papers 2 to 22, except for 5 (revised edition), are available from the National Weather Service Western Region, Scientific Services Division, P. O. Box 11188 , Federal Building, 125 South State Street, Salt Lake City, Utah 84i4?. edition), and all others beginning with 25 are available from the National Technical Information Service. U. S. Department of Comerce, Silis Buflding, 5285 Port Royal Road, Soringfield, Virginia 22151 . Prices vary for all paper copy; $\$ 2.25$ microtiche. Order by accession number shown in parentheses at end of each entry.

ESSA Technical Memoranda (WRTM)

Climatological Precipitation Probabilities. Compiled by Luclanne Miller, December 1965Western Region Pre- and Fost-FP-3 Program, December 1, 1965, to February 20, 1966. Edward D. Diemer, March 1966.Station Descriptions of Local Effects on Synoptic Weather Patterns. Philip Williams. Jr., April 1966 (revised Novembor1967, October 1969). (PB-17800)
8
11
Final Repori on Precipitation Probability Test Programs. Edward D. Diemer, May 1966(Interpreting the RAREP. Herbert P. Benner, May 1966 (revised January 1967)
Some Electrical Processes in the Amosphere. J. Latham, June 1966.
A Digitalized
Limitations of Selected Meteorological Data. December 1966
An Objective
Derivation of Radar Horizons in Mountainous Terrain. Roger G. Pappas, April 1967
ESSA Technical Memoranda, Weather Bureau Technical Memoranda (WBTM)
25 Verification of Oper
1967. (PB-176240)
A Study of Winds in the Lake Mead Recreation Area. R. P. Augul is, January 1968. (PB-177830)
Weather Extremes. R. J. Schmidil, April 1968 (revised July 1968), (PB-178928)
Smali-Scale Analysis and Prediction. Philip Williams, Jr.. May 1968. (PB-178425)
Numerical Weather Prediction and Synoptic Meteorology. Capt. Thomas D. Murphy, U.S.A.F., May (968. (AD-673365)
Precipitation Detection Probabillities by Salt Lake ARIC Radars. Robert K. Belesky, July 1968, (PB-179084)
Probability Forecasting-
Jufy 1958. (PB-179289)
July 1958. (PB-179289)
Joint ESSA/FAA ARTC Rada Joint ESSA/FAA ARTC Rada
June 1970). (AD-681857) Temperature Trends in Sacramento-Another Heat Island. Anthony D. Lentini, February 1969. (PB-183055)
Disposal of Logging Residues without Damage to Air Quality. Owen P. Cramer, March 1969. (PB-183057).
Climate of Phoenix, Arizona. R. J. Schmidii, P. C. Kangieser, and R. S. Ingram, Apri) 1969. (Rev. July 1971; May
1976.) (PB-184295)
The Man-Machine Mix in Applied Weather Forecasting in the 1970s. L. W. Snelilman, August 1.969. (PB-185068)
Aralysis of the Southern California Santa Ana of January 15-17, 1966. Barry B. Aronovitch, August 1969. (PB-185070
Forecasting Maximum Temperatures at Helena; Montana. David E. O1sen, October 1969. (PQ-185762)
Estimated Return Periods for Short-Duration Precipitation in Arizona. Paul C. Kangieser, October 1969. (PB-187763)
Appitications of the Net RadicDecember 1969. (PB-190 76)
Statistical Analysis as a Flood Routing Tool. Robert J. C. Burnash, December 1969. (PB-188744)
Tsunami. Richard P. Augulis, February 1970. (PB-190157)
Predicting Precipitation Type. Robert J. C. Burnash and Floyd E. Hug, March 1970. (PR-190962)
Statistical
(9B-191743)
Western Region Sea State and Surf Forecaster's Manual. Gordon C. Shields and Gerald B. Burdwell,
Application of the SSARR Model to a Basin without Discharge Record. Vail Schermerhorn and Danald W. Kuehl, August1970. (PB-194394)
Areal Coverage of Precipitation in Northwestern Utah. Phil ip Williams, ir ., and Werner J. Heck, Sept. 1970. (P8-194389)
Preliminary Report on Agricultural Fleld Burning vs. Atmospheric Visibility in the Willamette Valley of Oregon. EarlPreliminary Report on Agricultural Fleld Burning vs. Atmosphe
M. Bates and David 0. Chilcote, September 1970 . (PB-194710)
Appitcation of PE Madet Forecast Parameters to Local-Area Forecasting. Leonard W. Snelliman, Oct. (C0M-71-00017)
NOAA Technical Memoranda (NWS WR)
An Aid for Forecasting the Minimum Temperature at Medford, Oregon. Arthur W. Fritz,
Forecasting the Catalina Eddy. Arthur L. Eicheiberger. February 1971. (COM-71-00223)
forecasting the Catalina Eddy. Arthur L. Eichelberger, February 1971. (COM-71-00223)
$700-\mathrm{mb}$ Warm. Air
(COM-71-00349)
Wind and Weather Regimes at Great Falls, Montana. Warren B. Price, March 1971
A Prel iminary Report on Correlation of ARTCC Radar Echoes and Precipitation. Wilbur K. Hall, June 1971. (COM-71-00829)National Weather Service Support to Soaring Activities. Ellis Burton, August 1971. (COM-71-00956)
Western Region SyHoptic Analysis-Problems and Hethods. Philif Williams, Jr. February 1972. (COM-72-10433)
Thunderstorms and Hail Days Probabilities in Nevada. Clarence M. Sakamoto, April 1972. (COM-72-10554)
(COU-72-10707)
(COU-72-10707)
Monthly Climatological Charts of the
Gales, July 1972. (COM-72-1 140)
A Study of Radar Echo Distribution in Arizona During July and August. John E. Hales, Jr., July 1972. (COM-72-11136)
Forecasting Pr
(COM-72-11146)
Climate of Stockton, California. RoDert C. Nelson, July 1972. (COM-72-10920)
Estimation of Number of Days Above or Below Selected Temperatures. Clarence M. Sakamoto, October 1972. (C041-72-10021)An Ald for Forecasting Summer Maximum Temperatures at Seattle, Washington. Edgar G. Johnson, Nov. 1972. (COM-73-10150)A Comparison of Manual and Semiautomatic Methods of digitizing Analog Wind Records. Glenn E. Rasch. March 1973.(COM-73-10669)(COM-73-10769) Conditional Probabilities for Sequences of Wet Days at Phoenix, Arizona. Paul C. Kangieser, June 1973. (COM-73-il1264)Conditional Probabilities for Sequences of Wet Days at Phoenix, Arizona. Paul O. Kangieser, June 1973. (COM-73-il264)1973. (COM-73-11276)
Oblective Forecast of Precipitation over the Western Region of the Inited States. Iulia N: Paenle and larry P. ubjective rorecast of precipitation over the W
kierulff. September 1973 . (coll-73-11946/3AS)A Thunderstorm "Warm Wake" at Midland, Texas. Richard A. Wood, September 1973. (COM-73-11845/AS)90 A Thunderstorm "Warm Wake" at Midland, Texas. Richard A. Wood, September 1973. (COM-73-11845/AS)
91 Arizona "Eddy" Tornadoes. Robert S. Ingram, October 1973. (COM-73-10465)91 Arizona "Eddy" Tornadoes. Robert S. Ingram, October 1973. (COM-73-10465)

DEVELOPMENT OF A PROBABILITY EQUATION FOR WINTER-TYPE PRECIPITATION PATTERNS IN GREAT FALLS, MONTANA

Kenneth B. Mielke

National Weather Service Forecast Office Great Falls, Montana March 1978

CONTENTS

Page
Abstract 1
I. Introduction 1
II. Data 2
III. Analysis 3
IV. Comparison of MOS and Derived Equation 6
V. Conclusion 6
VI. Acknowledgments 7
References 7
Page
Figure 1. Area considered in this precipitation study 8
Figure 2. Measurable precipitation probability as a function of the GTF $500-\mathrm{mb}$ contour crossing at 145 W and 130 W 9
Figure 3. Measurable precipitation probability as a function of the ZU-BOI sea-level pressure difference and the difference between the $500-\mathrm{mb}$ GTF contour crossing through 145 W or 130 W and the 120 W contour crossing value in degrees latitude 9
Figure 4. Probability of measurable precipitation as a function of the isoplethed probability categories of Figure 2 versus the probabil- ity categories of Figure 3 10
Figure 5. Histogram displaying the range of Y values from the linear regression 11
Table 1. Measurable precipitation probability at GTF as a function of the GTF $500-\mathrm{mb}$ contour crossing at the 145 W and 130W meridians $12^{\text {i }}$
Table 2. A breakdown of all measurable precipitation cases in this study as a function of the highest latitudinal crossing of the GTF $500-\mathrm{mb}$ contour at key longitude meridians 13
Table 3. A comparison of MOS and derived-equation first-period probabilities 14
Table 4. A comparison of MOS and derived-equationfirst-period probabilities during a rela-tively dry period in October 197715
Table 5. A comparison of MOS and derived equation lst, 2nd, and 3rd 12-hour period probabilities during a period in December 1977 16

Kenneth B. Mielke
National Weather Service Forecast Office
Great Falls, Montana

Abstract

Four parameters known to be reliable predictors of winter-type precipitation patterns (Oct-Mar) at Great Falls, Montana, are analyzed independently and then integrated into a probability of measurable precipitation equation. Five hundred fifty-one (551) cases are studied involving surface and upper-air data. The occurrence of precipitation at Great Falls, Montana, is strongly dependent upon the development of upslope conditions along the east slopes of the Rocky Mountains in Montana. Successive graphical regression analysis is first used to show the strength of the four parameters collectively. A probability equation is then developed by a linear regression program. The derived equation is compared with the Model Output Statistics and is shown to have practical value as a forecast tool.

I. INTRODUCTION

Winter-type precipitation and storms in Montana have always been a focal point of discussion and research among the forecasters at the Weather Service Forecast Office (WSFO) at Great Falls, MT. Their frequent occurrence and rapid development generated various schemes, indices, and rules of thumb to aid the forecaster in predicting onset, duration and intensity of these systems. This report develops another such forecast tool.

Harding (1972) discussed in detail the ridge-trough relationships in the Gulf of Alaska and the antecedent development of upslope/downslope conditions along the east slopes of the Rockies in Montana. Downslope in this region is characterized by southwesterly winds while upslope winds have a northerly component. Basically, two index systems were devised by Harding (1972). The first was a comparison of sea-levelpressure relationships among the Whitecourt (ZU), Alta; Juneau (JNU), AK; Annette (ANN), AK; Boise (BOI), ID; and Great Falls (GTF), MT, stations (Figure 1). Rising or higher pressures in Alaska which translate downstream along the lee slopes of the Canadian Rockies are easily monitored by graphing these representative stations and such values/gradients precede the development of upslope wind flow along the lee slopes of the Rockies in Montana. Conversely, falling or lower pressures at the northern-most stations are a reflection of lee trough development east of the Canadian Rockies and eventual downslope conditions east of the divide in Montana. The intensification or movement of a low-pressure system into the Gulf of Alaska is usually a
prerequisite for this situation. Analysis by Harding (1972) of several case histories based on these surface-pressure relationships yielded a timing scheme for Arctic and Pacific Northern* fronts in Montana.

The second index system employs upper-air data, specifically, latitudinal crossing (in degrees) of the GTF $500-\mathrm{mb}$ contour through the $120^{\circ} \mathrm{W}, 130^{\circ} \mathrm{W}$, and $145^{\circ} \mathrm{W}$ longitude meridians (Figure 1). This index becomes positive (for measurable precipitation) if the value of the latitudinal crossings at $130^{\circ} \mathrm{W}$ and/or $145^{\circ} \mathrm{W}$ are greater than the $120^{\circ} \mathrm{W}$ contour crossing value. Increasingly higher values of contour crossings at the $130^{\circ} \mathrm{W}$ and $145^{\circ} \mathrm{W}$ meridians indicate upper-ridge development over the Gulf of Alaska. This situation normally leads to the filling of the lee side trough and possible upslope development in Montana. In some ways, this index system could be compared with the $500-\mathrm{mb}$ map-type system (Augulis 1970).

The absolute values, gradients and interaction of these indices are used to determine the onset and intensity of upslope/downslope situations along the east slopes of the Rockies in Montana; the key to winter-type precipitation forecasts. As shown convincingly by Harding (1972), less than 10% of measurable precipitation at GTF occurs during downslope conditions. Often, one index will remain negative while the other index becomes positive. For example, a positive upper-air index (short-wave trough approaching) may exist, ye't the current surface index (and its prognosis) indicates downslope along the lee slopes of the Rockies. While precipitation may develop west of the divide in Montana, it could become quite spotty or never develop along the east slopes of the Rockies if sufficient downslope winds persist. The purpose of this study is to combine these parameters in an effort to develop a probability equation for winter-type precipitation in Great Falls.

II. DATA

Data were obtained from index graphs stored at the GTF WSFO for the 6 -month period October-March from 1974 through December 1976. Surface pressure graphs are normally plotted at 3-hour intervals while the $500-\mathrm{mb}$ data are plotted at 12 -hour intervals. Twelve-hour precipitation amounts are plotted on these graphs also. Graphical index values were extracted which resulted in 551 case histories involving 95 measurable precipitation events.

[^0]
III. ANALYSIS

The graphical representation presented several possible combinations of indicators that could be used in a probability scheme. Four parameters were chosen which were known to be individually strong indicators of measurable precipitation at Great Falls.

The first parameter was the difference between sea-level pressures at ZU and BOI. This difference reflects upslope conditions along the lee slopes of the Rockies when ZU sea-level pressure is greater than that of BOI and downslope when the BOI-sea level pressure is higher. This difference is defined as positive when $Z U-B O I>0$. The BOI sea-level pressure was used instead of the GTF sea-level pressure since a strong basin high-pressure area, usually centered near BOI, can offset pressure rises along the lee slopes of the Canadian Rockies. For example, ZU sea-level pressure may exceed the GTF value, however, BOI sea-level pressure may exceed both the GTF and ZU values inhibiting upslope development along the lee slopes in Montana. The more positive the ZUBOI difference becomes, the greater upslope development is expected along the east slopes of the Rockies in southern Alberta and Montana. Conversely, increasingly negative values of this difference indicate strengthening downslope conditions in this region. Considering all cases in this study, the $Z \mathrm{U}-\mathrm{BOI}$ difference was greater than zero 143 times and 62 cases of measurable precipitation (. 01 of an inch or more) occurred in the following 12 -hour period. This parameter alone, then, gives a 43% probability.

The remaining three parameters involved the GTF $500-\mathrm{mb}$ contour latitude crossing at $120^{\circ} \mathrm{W}, 130^{\circ} \mathrm{W}$, and $145^{\circ} \mathrm{W}$ longitude. As stated earlier, increasing latitude of the contour crossing at $130^{\circ} \mathrm{W}$ and $145^{\circ} \mathrm{W}$ are indicative of ridge development in the Gulf of Alaska. This is a necessary but not a sufficient prerequisite for expecting the lee side trough in Alberta to fill. Conversely, lowering values of these crossings correlate with lee trough development or enhancement east of the Rockies.

Table 1 illustrates the predictive qualities of these two parameters for measurable precipitation. Note, when the contour crosses $145^{\circ} \mathrm{W}$ at or above $65^{\circ} \mathrm{N}$, the probability of precipitation for the following 12hour period is 66%. As the contour crossings are divided into 5° latitudinal increments, the probabilities decrease dramatically as the contour crossing value decreases. Table 1 also gives the same breakdown for $130^{\circ} \mathrm{W}$ meridian crossings. The values are very nearly the same. In Table 2, a comparison of the three contour-crossing values is given for the 95 measurable precfpitation cases only. This table emphasizes the importance of $500-\mathrm{mb}$ ridging near 145° w for precipitation events in Great Falls. In 60% of the measurable precipitation cases, the $145^{\circ} \mathrm{W}$ contour crossing equaled or exceeded the values at $120^{\circ} \mathrm{W}$ and $130^{\circ} \mathrm{W}$. The $120^{\circ} \mathrm{W}$ meridian has not been analyzed in as much detail as the other two meridians because of its proximity to GTF, which would diminish its predictive quality. Instead, the contour crossing value at $120^{\circ} \mathrm{W}$ is utilized as a standard to measure the amplitudes of the $130^{\circ} \mathrm{W}$ and $145^{\circ} \mathrm{W}$
contour values, as will be discussed later. Based on Table 1, therefore, the values of the $130^{\circ} \mathrm{W}$ and $145^{\circ} \mathrm{W}$ contour crossings are used as the second and third parameters.

The final parameter involved the difference between the $145^{\circ} \mathrm{W}$ or $130^{\circ} \mathrm{W}$ contour crossing values and the $120^{\circ} \mathrm{W}$ value. This difference is defined as positive when the $145^{\circ} \mathrm{W} / 130^{\circ} \mathrm{W}$ values exceed the $120^{\circ} \mathrm{W}$ value. The higher of the latitude crossing values at the $145^{\circ} \mathrm{W}$ and $130^{\circ} \mathrm{W}$ meridians is used and this difference comprises the fourth parameter. This difference measures the amplitude of the $500-\mathrm{mb}$ wavelength upstream from GTF. For example, a large positive value of the $\left(145^{\circ} \mathrm{W} / 130^{\circ} \mathrm{W}-\right.$ $120^{\circ} \mathrm{W}$) difference would indicate a high amplitude ridge in the Gulf of Alaska and a trough in the western United States. The magnitude of this amplitude is a measure of upslope intensity. Large positive differences can also be attained when a sharp short-wave $500-\mathrm{mb}$ trough tracks into the Pacific Northwest. In this sense, the difference can also be thought of as a measure of curvature or vorticity advection into Montana. Either of these situations is conducive to upslope development. Of the 551 cases in this study, the $\left(145^{\circ} \mathrm{W} / 130^{\circ} \mathrm{W}-120^{\circ} \mathrm{W}\right)$ difference was greater than zero 264 times. Of these 264 cases, 85 involved measurable precipitation for a 32% probability in a 12 -hour period. With the strength of the 4 parameters now established on an individual basis, a combination of these predictors into a single probability forecast value seemed appropriate.

The successive graphical regression method shown by Panofsky (1965) was first employed to determine how much variance could be reduced by combining the parameters. First, the $500-\mathrm{mb}$ latitudinal crossing, in degrees, of the GTF contour at $145^{\circ} \mathrm{W}$ was plotted against the crossing at $130^{\circ} \mathrm{W}$ (Figure 2). Of course, the linear relationship between these two parameters is necessarily strong, as shown by the best-fit line. This graph was accomplished, however, to obtain isopleths of probabilities as shown.

In the second graph shown in Figure 3, the (ZU-BOI) sea-level pressure difference was plotted against the greater of the $\left(145^{\circ} \mathrm{W} / 130^{\circ} \mathrm{W}\right.$ $120^{\circ} \mathrm{W}$) contour differences. The scatter about the best-fit curve was greater; however, measurable probability categories were easily delineated. The best probability of measurable precipitation occurred in the quadrant where both values were positive, while the lowest probability centered in the negative quadrant. Next a third graph was constructed as shown in Figure 4 using the probability categories from Figure 3 as the ordinates and those from Figure 2 as the abscissa. Again, the cases were plotted and values isoplethed, resulting in 5 well-defined probability categories. This method graphically reduced the variance of the probability forecast.

In practice, the use of three graphs is of ten cumbersome; therefore, a mathematical expression is more desirable. A linear regression equation program was available on the Statistical Programs cassette of the Wang Computer. This equation had the form,

$$
Y=A_{1} X_{1}+A_{2} X_{2}+A_{3} X_{3} .
$$

Since only three independent variables were allowed, one of the four forecast parameters had to be eliminated or two had to be combined. From the above discussion and Figure 2, it is evident that the $500-\mathrm{mb}$ crossing value, in degrees latitude, at $130^{\circ} \mathrm{W}$ and $145^{\circ} \mathrm{W}$ correlated quite well. Therefore, in each case, these two parameters were added to form a single variable. Y is the dichotomous dependent variable having the value 1.0 for measurable precipitation and 0.0 for trace or none. Substitution of these variables into the program yielded the following equation:

$$
Y=.01251 X_{1}+.00132 X_{2}+.02361 X_{3}
$$

where
$X_{1}=(Z U-B O I)$ sea-level pressure in millibars
$\mathrm{X}_{2}=$ The sum, in degrees latitude, of the GTF $500-\mathrm{mb}$ contour crossing at $145^{\circ} \mathrm{W}$ and $130^{\circ} \mathrm{W}$ (Ex., $50^{\circ}+45^{\circ}=95^{\circ}$)

$$
\begin{aligned}
& \mathrm{X}_{3}= \text { The difference of the } 120^{\circ} \mathrm{W} \text { GTF } 500-\mathrm{mb} \text { contour } \\
& \text { crossing value, in degrees latitude, from the } \\
& \text { value at } 130^{\circ} \mathrm{W} \text { or } 145^{\circ} \mathrm{W} \text {. The larger of the } \\
& \text { two values at } 145^{\circ} \mathrm{W} \text { and } 130^{\circ} \mathrm{W} \text { is used. }
\end{aligned}
$$

The magnitudes of X_{1} and X_{3} are 10^{l} while the magnitude of X_{2} is 10^{2}. Therefore, each of the three terms in the equation has a magnitude of approximately 10^{-1}.

The dependent variable, Y (probability) was then plotted onto a histogram in order to determine appropriate class intervals of probability. This procedure revealed six well-defined probability classes, as shown in Figure 5, ranging from 2% to 85%. Class sizes and intervals were not uniform due to the strong bias in the sample towards no precipitation. Also, shown in Figure 5 are the occurrences of trace events and the probabilities of a trace or more precipitation in each class interval. Over a third of all precipitation events in this study involved a trace.

The classes in Figure 5 were then rounded down to the nearest 10% which yielded six probability categories of $2 \%, 10 \%, 20 \%, 40 \%, 60 \%$ and 80%. These values and their limits were incorporated into a computer program. By inputting the BOI and $Z U$ sea-level pressures and the $120^{\circ} \mathrm{W}, 130^{\circ} \mathrm{W}$, and $145^{\circ} \mathrm{W}$ GTF $500-\mathrm{mb}$ contour crossings, the appropriate probabilities of measurable and trace or more precipitation during the following 12-hour period are printed out. By using the LFM or PE upper air and surface progs, four 12-hour probabilities of precipitation can be obtained. Actual data are used for the lst 12 -hour forecast. In some cases, mixing of the data from the progs yields a better solution. The LFM surface progs frequently forecast too much of a downslope gradient from southern Alberta into Montana east of the Rockies. If this error is large, it can offset the upper-air parameters and low probabilities of precipitation result. The speed and height changes of the LFM upper-air progs, however, are generally preferred over the PE. Therefore, in some cases, the use of the LFM upper-air data mixed with the PE surface progs yields a desirable compromise.

The Model Output Statistics PoPs were compared against the equation derived PoPs during the period 3-11 January 1977. The long-wave pattern consisted of a $500-\mathrm{mb}$ ridge near $140^{\circ} \mathrm{W}$ and a trough over the eastern United States. Short-wave troughs tracked down the east side of the ridge across Montana into the long-wave trough resulting in several periods of precipitation at Great Falls. In Table 3 is a comparison of 17 consecutive 12 -hour periods, for which data were available. In this example, actual data were substituted into the derived equation to determine PoPs. During this period, the equation PoPs faired quite well, scoring a 37% improvement over MOS, based on the Brier Score. In Table 4, a similar comparison is shown during a dry period from 22-31 October 1977. Again, actual data were substituted into the derived equation to determine the PoPs. In 20 consecutive 12 -hour periods, improvement over MOS. Pops was 86%.

Shown in Table 5 is a comparison of the 1 st, 2 nd and 3 rd period MOS and the derived-equation forecasts during a 12 -day period in December 1977. In this example, the derived-equation probabilities are obtained from the 12-, 24- and 36 -hour LFM surface and upper-air progs, rather than from the actual observations. The derived equation PoPs displayed an improvement over MOS PoPs of 9.3% in the 1st period, 7.6% in the second and 18.4% in the 3rd. Overall, the improvement over MOS was 11.6%. Using the LFM progs as input into the derived equation is a more realistic approach to the use of this product in operational forecasting. This approach, however, assumes a perfect prog, which isn't always the case. Therefore, the results are not only a measure of the derived equation's accuracy, but also of the prog itself.

v. CONCLUSION

The predictive characteristics of the four parameters analyzed in this study have been qualitatively known to Great Falls WSFO forecasters for many years. This study attempted to combine and quantify these predictors into a useful single forecast tool. An advantage of the derived probability equation is its flexibility. Data can be entered into the program from either the LFM or PE surface and upper-air progs, from actual observations or data can be mixed from the progs.

The derived probability equation also serves as an objective comparison to the MOS probability values. The probability equation obtained in this study is, of course, biased towards ridge development in the Gulf of Alaska and upslope flow east of the Rockies when measurable precipitation is expected. The MOS equations contain more parameters, however, and will likely yield better results in some cases, such as warm-air advection precipitation. Nevertheless, as shown in Table 3, during classical winter-type precipitation patterns, the derived probability equation can be expected to give quite good results.

VI. ACKNOWLEDGMENTS

I would like to express a sincere thanks to Mr. Warren G. Harding, Lead Forecaster at the Great Falls WSFO, for the many inspiring discussions on precipitation forecasting at Great Falls and for the use of the graphical data that made this research project possible. I would also like to thank Dr. Sandy MacDonald and Mr. Leonard Snellman at the Scientific Services Division for their helpful comments and suggestions.

REFERENCES

Harding, Warren G., 1972: Forecasting Arctic Outbreaks into the Great Falls Area. Manuscript at Great Falls, MT, WSFO. Presented at National AMS Conference, Portland, OR, 1972.

Panofsky, Hans A. and Glen W. Brier, 1965: Some Applications of Statistics to Meteorology, pp. 180-183.

Augulis, Richard P., 1970: Precipitation Probabilities in the Western Region Associated with 500-MB Map Types. WBTM Technical Memorandum, WBTM WR 45/1-4, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, National Weather Service Western Region.

Figure 1. Area considered in this precipitation study. Dotted lines indicate a hypothetical 500-mb contour through GTF with intersections at key meridians marked.

Figure 2. Measurable precipitation probability as a function of the GTF 500-mb contour crossing at 145 W and 130 W . Best-fit equation to data. also given. A fraction of the data points are plotted to illustrate a representative distribution.

Figure 3. Measurable precipitation probability as a function of the ZU-BOI sealevel pressure difference and the difference between the 500-mb GTF contour crossing through 145 W or 130 W and the 120 W contour crossing value in degrees latitude. The contour crossing value which is the higher, in degrees latitude, of the 130 W or 145 W meridians is used. A fraction of the data points are plotted to illustrate a representative distribution.

Figure 4. Probability of measurable precipitation as a function of the isoplethed probability categories of Figure 2 versus the probability categories of Figure 3.

Figure 5. Ilistogram iisplayin the range of Y values from the linear regression, $\mathrm{Y}=.01251 X_{1}+.00132 X_{2}+.02361 X_{3}$, for 551 cases. Measurable precipitation cases are shaded.

GTF 500mb	145,			130 W		
$\begin{gathered} \text { LAT. CONT } \\ \text { CPCOTMG } \\ \text { (C) } \end{gathered}$	- PCPN/CASES	$\begin{aligned} & \text { GTF } 500 \mathrm{mb} \\ & \text { CROSSING IN } \\ & 5 \text { DEG INTERVAL } \end{aligned}$	PCPM/CASES	PCFPT/CASES		PCPN/CASES
$\geq 65 \mathrm{~N}$	$27 / 41=66 \%$			17/29 = 59		
		$65<\mathrm{C} \leq 60 \mathrm{~N}$	$17 / 37=4.67$		$65<\mathrm{C} \leq 60 \mathrm{~N}$	$21 / 45=47 \%$
$\geqslant 60 \mathrm{~N}$	$49 / 78=56 \%$			$38 / 74=518$		
		$60<0 \leq 55 \mathrm{~N}$	$10 / 31=32$ 号		$60<C \leq 55 N$	$28 / 79=35 \%$
\geq ¢	$54 / 109=50 \times$			66/1.53 $=43 \%$		
		$55<\mathrm{C} \leq 50 \mathrm{~N}$	17/75 $=233$		$5 弓 \angle \mathrm{C} \leq 50 \mathrm{~N}$	$12 / 142=89$
$\geq 50 \mathrm{~N}$	$71 / 184=392$			$78 / 295=26 \%$		
		$50<0 \leq 4.5 \mathrm{~N}$	11/117 = $9^{\text {a }}$		$50<0 \leq 45 N$	12/145= 8\%
$\geqslant 45 \mathrm{~N}$	$82 / 3 n 1=27 \%$			90/440= 20:		
		$45<\mathrm{C} \leq 40 \mathrm{~N}$	$8 / 138=67$		$4.5<\mathrm{C} \leq 40 \mathrm{~N}$	$5 / 91=5 \%$
$\geq \mathrm{ln} \times 4$	$90 / 439=21 \%$			$95 / 531=180$		
		$40 \angle \mathrm{C} \leq 35 \mathrm{~N}$	$5 / 102=5 \%$		$40<0 \leq 35 N$	$n / 34=0 \%$
$\geq 35 \mathrm{~N}$	$35 / 541=180$			$95 / 565=173$		
		$35 \angle \mathrm{C} \leq 30 \mathrm{~N}$	$0 / 31=0 \%$		$35 \sim 0 \leq 30 \mathrm{~N}$	$0 / 11=0$
$\geq 30 \mathrm{~N}$	95/572= 17%			95/575= 15%		
		$30<c \leq 25 \mathrm{~N}$	$0 / 8=0 t$		$30<\mathrm{C} \leq 25 \mathrm{~N}$	$0 / 4=00 \%$
$\geq 25 \mathrm{~m}$	$95 / 5 \% 0=16 \%$			$95 / 580=167$		

Table 1. Measurable precipitation prohability at aTF as a forction of the GTF 5 n -mb contour

getat falls 500 mb Coutcour crossing (deg latitude)	POPN/mOTAL PJPN CASES
	$57 / 05=60 \%$
130W CONTOUR CRSG $>145 \mathrm{~W}$ and $\geqslant 120 \mathrm{~W}$ CONTOUR CRSGS	27/95 $=28 \%$
	11/95 $=12 \%$

Table 2. A breakdown of all measurable precipitation cases in this study as a function of the highest latitudinal crossing of the GTF 500-mb contour at key longitude meridians.

JAMTVRY 1977 DATE/TTME	$\begin{aligned} & 12 \text { HR PRECTP } \\ & \text { TOLTOMTNG } \\ & \text { MATE/TTME } \\ & \text { (in.) } \end{aligned}$	$\begin{aligned} & \text { MOS } \\ & \text { POP } \\ & (x) \end{aligned}$	TORTTED Enintten $\mathrm{P} \cap \mathrm{P}$ (\%)
03/002	TRACE	10	1! ${ }^{1}$
03/122	. 12	30	80
04/002	. 16	70	8
04/122	. 07	70	8
05/002	.03	30	40
05/122	. 00	20	20
06/noz	. 0	5	10
26/122	. 16	n	2
07/nก7	. 0	20	10.
07/122	.77	20	60
$08 / 002$.$\cap 1$	20	80.
08/122	TPACE	30	20
09/002	TPACE	10	20
09/122	. 01	20	10
10/002	. 00	10	40
10/122	. 13	20	Lo
$11 / 002$. O_{4}	20	20

Table 3. A comparison of MOS and derived-equation first-period probabilities, 3-1l January 1977.

$\begin{aligned} & \text { OCTPBFM } 1977 \\ & \text { DATE/TTME } \end{aligned}$	12 HR PRFCTP FOLIOTHEG DATE/TTME (in.)	MOS POP (男)	DERIUED FRUNTON POP (碞)
22/002	0	5	10
22/122	0	5	2
23/002	n	20	2
23/122	0	30	2
24/002	0	20	2
24/122	0	0	2
25/002	0	n	2
25/122	0	0	2
26/002	TRACE	60	2
26/122	TRACE	30	2
27/002	\bigcirc	5	2
27/122	\bigcirc	\bigcirc	2
28/002	\bigcirc	n	10
28/122	0	0	20
29/002	0	0	10
29/122	0	20	2
30/002	\bigcirc	20	10
30/122	0	20	10
31/002	0	2	10
31/122	0	0	2

Table 4. A comparison of MOS and derived-equation first-period probabilities during a relatively dry period in October 1977.

Table 5. A comparison of MOS and derived equation lIst, 2nd, and 3rd 12-hour period probabilities during a period in December 1977. The data for the derived-equation probabilities were extracted from the 12-, 24-, and 36-hour LFM surface and upper progs.

NOAA Technical Memoranda NWSWR: (Continued)
92 Smoke Management in the Willamette Valley. Earl M. Bates, May 1974. (COM-74-11277/AS)
95 An Operational Evaluation of $500-\mathrm{mb}$ Type Stratified Regression Equations, Alexander E. MacDonald, June 1974. (COM-74-1|407/AS)
94 Conditional Probability of Visibility Less than One-Half Mile in Radiation Fog at Fresno, California. John D. Thamas, August 1974. (COM-74-11555/AS)
95 Glimate of Flagstaff, Arizona. Paul W. Sorenson, August 1974. (COM-74-11678/AS)
96 Wap Type Precipitation Probabilities for the Western Region. Glenn E. Rasch and Alexander E. MacDonald, February 1975 (COM-75-10428/AS)
97 Eastern Pacific Cut-off Low of April $21-28$, 1974. William J. Alder and George R. Miller, January 1976. (PB-250-711/AS) 98 Study on a Significant Precipitation Episode in the Western United States. Ira S. Brenner, April 1975. ($00 \mathrm{M}-75-10719 / \mathrm{AS}$)
99 A Study of Flash Flood Susceptibility--A Basin in Southern Arizona. Gerald Williams, August 1975. (COM-75-11360/AS) (COM-75-11404/AS)
102 A Set of Rules for Forecasting Temperatures in Napa and Sonoma Countles. Wesley L. Tuft, October 1975. (PB-246-902/AS)
103 Application of the National Weather Service Flash-Flood Program in the Western Region. Gerald Williams, January 1976. (PB-253-053/AS
104 Objective Aids for Forecasting Minimum Temperatures at Reno, Nevada, During the Summer Months. Christopher D. Hill, January 1976. (PB-252-866/AS)

105
100° Use MOS Forecast Parameters in Pormerature Forecasting (PB-254-650)
in Temperature Forecasting. John C. Plankinton, Jr., March 1976. (PB-254-649)

foreasting North Winds in the Upper Sacramento Valley and Adjoining Forests. Christopher E. Fontana, September 1976.

 Cool Inflow as A weakening Influence on Eastern Pacific Tropical Cyclones. William J. Denney, November 1976. (PB 264655/AS)Operational Forecasting Using Automated Guidance. Leonard W. SnelIman, February 1977. (PB 273663/AS) Out of print. The MAN/MOS Program. Alexander E. MacDonald, February 1977. (PB 265941/AS) Winter Season Minimum Temperature Formula for Bakersfield, California, Using Multiple Regression. Michael J. Oard, February 1977. (PB 273694/AS)
114 Tropical Cyclone Kathleen. James R. Fors, February 1977. (PB 273676/AS)
115 Prognam to Calculate Winds Aloft Using a Hewlett-Packard 25 Hand Calculator. Brian Finke, February 1977 . (Out of
116 A Study of Wind Gusts on Lake Mead. Bradley Colman, April 1977. (PB 268847)
117 The Relative Frequency of Cumulonimbus Clouds at the Nevada Test Site as a Function of K-value. R. F. Quiring, April 1977. (PB 272831)

118 Woisture Distribution Modification by Upward Vertical Motion. Ira S. Brenner, April 1977. (PB 268740)
119 Relative Frequency of Occurrence of Warm Season Echo Activity as a Function of Stability Indices Computed from the Yucca Flat, Novada, Rawinsonde. Darryl Randerson, June 1977. (PB 27/290/AS)
120 Some Meteorological Aspects of Air Pollution in Utah with Emphasis on the Salt Lake Valley. Dean N. Jackman and William T. Chapman, June 1977. (PB 271267/AS)
121 Climatological Prediction of Cumulonimbus Clouds in the Vicinity of the Yucca Flat Weather Station, R. F. Quiring, June 1977. (PB 271704/AS)
122 A Method for Transforming Temperature Distribution to Normality. Morris S. Webb, Jr., June 1977. (PB 27/742/AS)
123 Study of a Heavy Precipitation Occurrence in Redding, Cal ifornia. Christopher E. Fontana, June 1977. (PB 273624/AS)
124 Statistical Guidance for Prediction of Eastern North Pacific Tropical Cyclone Motion - Part I. Charles J. Neumann and Preston W. Leftwich, August 1977. (PB 272661)
125 Statistical Guidance on the Prediction of Eastern North Pacific Tropical Cyclone Motion - Part II. Preston W. Leftwich and Charles J. Neumann, August 1977. (PB 273155/AS)
126. Cl imate of San Francisco. E. Jan Null, March 1978.

NOAA SCIENTIFIC AND TECHNICAL PUBLICATIONS

NOAA, the National Oceanic and Atmospheric Administration, was established as part of the Department of Commerce on October 3, 1970. The mission responsibilities of NOAA are to monitor and predict the state of the solid Earth, the oceans and their living resources, the atmosphere, and the space environment of the Earth, and to assess the socioeconomic impact of natural and technological changes in the environment.

The six Major Line Components of NOAA regularly produce various types of scientific and technical information in the following kinds of publications:

PROFESSIONAL PAPERS - Important definitive research results, major techniques, and special investigations.
TECHNICAL REPORTS-Journal quality with extensive details, mathematical developments, or data listings.

TECHNICAL MEMORANDUMS - Reports of preliminary, partial, or negative research or technology results, interim instructions, and the like.
CONTRACT AND GRANT REPORTS-Reports prepared by contractors or grantees under NOAA sponsorship.

TECHNICAL SERVICE PUBLICATIONS-These are publications containing data, observations, instructions, etc. A partial listing: Data serials; Prediction and outlook periodicals; Technical manuals, training papers, planning reports, and information serials; and Miscellaneous technical publications.

ATLAS-Analysed data generally presented in the form of maps showing distribution of rainfall, chemical and physical conditions of oceans and atmosphere, distribution of fishes and marine mammals. ionospheric conditions, etc.

> Information on availability of NOAA publications can be obtained from:
> ENVIRONMENTAL SCIENCE INFORMATION CENTER ENVIRONMENTAL DATA SERVICE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION U.S. DEPARTMENT OF COMMERCE

3300 Whitehaven Street, N.W. Washington, D.C. 20235

[^0]: *A Pacific Northern front, as defined by the Great Falls forecasters, is one in which the winds shift to the northwest after passage, giving 3 to 12 hours of upslope conditions. Its air mass is typically cool and unstable, originating from the Gulf of Alaska. An approaching front is defined as a Pacific Northern if the sealevel pressure at SHIP PAPA (C7P) exceeds the GTF sea-level pressure.

